Analisis penurunan kinerja main air compressor Kapal MT SC Gold Ocean berbasis planned maintenance system dan metode USG
Politeknik Ilmu Pelayaran Makassar
Politeknik Ilmu Pelayaran Makassar
Politeknik Ilmu Pelayaran Makassar
DOI:
https://doi.org/10.62391/ejmi.v7i2.165Main air compressor merupakan salah satu permesinan bantu yang sangat vital dalam operasional kapal karena berfungsi menyediakan udara bertekanan tinggi untuk proses starting engine dan pengoperasian sistem pneumatik. Penurunan kinerja main air compressor dapat berdampak langsung pada keandalan mesin induk, keselamatan pelayaran, serta kelancaran operasional kapal. Penelitian ini bertujuan untuk menganalisis penyebab utama penurunan kinerja main air compressor di atas kapal MT SC Gold Ocean serta merumuskan langkah perawatan yang tepat berdasarkan kondisi aktual di lapangan. Penelitian ini menggunakan pendekatan mix-method dengan mengombinasikan data kuantitatif dan kualitatif yang diperoleh melalui observasi langsung selama praktik laut, analisis data operasional kompresor, wawancara dengan awak mesin, serta studi literatur. Metode USG (Urgency, Seriousness, and Growth) digunakan untuk menentukan prioritas permasalahan yang paling berpengaruh terhadap penurunan kinerja kompresor. Hasil penelitian menunjukkan bahwa penyebab utama penurunan kinerja main air compressor adalah kerusakan pada suction valve dan delivery valve, serta patahnya piston ring. Kerusakan tersebut dipicu oleh keterlambatan penggantian komponen berdasarkan jam operasi, penumpukan kerak pada katup, serta sistem pelumasan yang tidak optimal. Kondisi ini menyebabkan kebocoran udara, menurunnya tekanan kerja, dan meningkatnya waktu pengisian botol angin. Penelitian ini menegaskan pentingnya penerapan Planned Maintenance System (PMS) secara konsisten sesuai buku manual untuk menjaga keandalan main air compressor. Hasil penelitian diharapkan dapat menjadi referensi praktis bagi perwira mesin dan awak kamar mesin dalam meningkatkan efektivitas perawatan serta mencegah terulangnya kegagalan serupa pada sistem pneumatik kapal.
The main air compressor is one of the most critical auxiliary machinery systems on board a vessel, as it supplies high-pressure air required for engine starting and pneumatic system operation. Performance degradation of the main air compressor may directly affect main engine reliability, navigational safety, and overall ship operations. This study aims to analyze the primary causes of performance degradation of the main air compressor on board MT SC Gold Ocean and to propose appropriate maintenance measures based on actual operational conditions. This research employs a mixed-method approach by integrating quantitative and qualitative data obtained from direct onboard observations during sea practice, analysis of compressor operational data, interviews with engine crew, and literature review. The USG (Urgency, Seriousness, and Growth) method is applied to prioritize the most critical factors contributing to compressor performance degradation. The results indicate that the main causes of performance degradation are damage to the suction valve and delivery valve, as well as fractured piston rings. These failures are primarily caused by delayed component replacement based on operating hours, scale deposits on valves, and inadequate lubrication systems. Such conditions lead to air leakage, reduced working pressure, and increased air bottle charging time. This study highlights the importance of consistent implementation of the Planned Maintenance System (PMS) in accordance with the manufacturer’s manual to maintain the reliability of the main air compressor. The findings are expected to serve as a practical reference for marine engineers and engine room personnel in improving maintenance effectiveness and preventing similar failures in ship pneumatic systems.
Keywords: Main air compressor perawatan kapal piston ring suction valve planned maintenance system
Gribbestad, M., Hassan, M. U., & Hameed, I. A. (2021). Transfer learning for prognostics and health management (PHM) of marine air compressors. Journal of Marine Science and Engineering, 9(1), 47. https://doi.org/10.3390/jmse9010047
Gryboś, D., & Leszczyński, J. (2024). A review of energy overconsumption reduction methods in the utilization stage in compressed air systems. Energies, 17(6), 1495. https://doi.org/10.3390/en17061495
Lazakis, I., & Turan, O. (2016). Risk assessment and decision-making for ship machinery maintenance. Ocean Engineering, 118, 247–255. https://doi.org/10.1016/j.oceaneng.2016.04.014
Turan, O., Lazakis, I., Judah, S., & Incecik, A. (2009). Maintenance strategy selection for ship machinery systems using a risk-based approach. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 223(2), 241–253. https://doi.org/10.1243/14750902JEME127
Zhu, Z., Chen, Y., Zhang, X., & Wang, Y. (2023). Failure mechanism and reliability analysis of reciprocating air compressors based on operational data. Engineering Failure Analysis, 149, 107289. https://doi.org/10.1016/j.engfailanal.2023.107289
Chen, H., Li, X., Wang, S., & Xu, J. (2021). Experimental investigation on valve failure characteristics in reciprocating compressors. Applied Sciences, 11(18), 8614. https://doi.org/10.3390/app11188614
Effendi, E., Habli, M. H., & Siregar, P. I. S. (2022). Analisa pengisian hisapan udara saat terjadinya penurunan tekanan kompresi pada compressor piston vertical two stage. Meteor STIP Marunda, 15(1), 63–71. https://doi.org/10.36101/msm.v15i1.217
Maghfiroh, A. M., & Chandra, A. B. (2023). Thermo valve air compressor maintenance and repair using the overall equipment effectiveness (OEE) method. International Journal of Engineering Continuity, 2(1), 1–10. https://doi.org/10.58291/ijec.v2i1.59
Bai, X., Li, Y., Zhang, Z., & He, Z. (2020). Early fault diagnosis of piston rings in reciprocating compressors based on pressure signals. Measurement, 152, 107326. https://doi.org/10.1016/j.measurement.2019.107326
Rahman, A., & Kim, J. M. (2018). Fault diagnosis of reciprocating compressors using vibration and acoustic emission signals. Mechanical Systems and Signal Processing, 107, 283–298. https://doi.org/10.1016/j.ymssp.2018.01.027
Nordal, H., & El-Thalji, I. (2022). Condition-based maintenance frameworks for marine machinery systems: A review. Applied Sciences, 12(7), 3311. https://doi.org/10.3390/app12073311
Antoni, J., Randall, R. B., & Sawalhi, N. (2017). Advanced diagnostic techniques for reciprocating machinery. Mechanical Systems and Signal Processing, 99, 43–68. https://doi.org/10.1016/j.ymssp.2017.05.041
Prasutiyon, H., & Kurniawan, F. D. (2021). Analisa pengaruh pemeliharaan machinery dari annual survey ke intermediate survey dengan menerapkan maintenance management system. Justek: Jurnal Sains dan Teknologi, 4(1), 1–9. https://doi.org/10.31764/justek.v4i1.4476
Aminzadeh, A., Karganroudi, S. S., Majidi, S., Dabompre, C., Azaiez, K., Mitride, C., & Sénéchal, E. (2025). A machine learning implementation to predictive maintenance and monitoring of industrial compressors. Sensors, 25(4), 1006. https://doi.org/10.3390/s25041006
Costa, A., Mastriani, E., Incardona, F., Munari, K., & Spinello, S. (2025). Predictive maintenance study for high-pressure industrial compressors: Hybrid clustering models. Proceedings of the Hawaii International Conference on System Sciences, 118. https://doi.org/10.24251/hicss.2025.118
Chen, T., Wang, L., Xu, J., Gao, T., Qin, X., Yang, X., Cong, Q., Jin, J., & Liu, C. (2022). Effect of groove texture on deformation and sealing performance of engine piston ring. Machines, 10(11), 1020. https://doi.org/10.3390/machines10111020
Jeřábek, M., Volf, M., & Richter, L. (2022). Air drying in an industrial compressor. MATEC Web of Conferences, 367, 00014. https://doi.org/10.1051/matecconf/202236700014
Hu, Y., Xu, W., Jia, G., Li, G., & Cai, M. (2022). Energy analysis of precooling air compressor system. Entropy, 24(8), 1035. https://doi.org/10.3390/e24081035
Lv, Z., Liu, X., Chen, H., & Tang, L. (2024). Experimental study of DC excitation effect on the performance of moving coil linear compressor. Scientific Reports, 14(1), 70473. https://doi.org/10.1038/s41598-024-70473-9
International Maritime Organization. (2022). International Safety Management (ISM) Code and guidelines on implementation. IMO. https://www.imo.org/en/OurWork/HumanElement/Pages/ISMCode.aspx
