Analisis teknologi pada kapal ramah lingkungan: Mendorong transportasi laut berkelanutan di era modern
collage
Universitas Pendidikan Indonesia
DOI:
https://doi.org/10.62391/ejmi.v7i1.113Penelitian ini bertujuan untuk mengevaluasi penerapan teknologi ramah lingkungan dalam sektor maritim sebagai upaya pengurangan emisi gas rumah kaca (GRK) dan pencapaian transportasi laut yang berkelanjutan. Mengingat industri pelayaran berkontribusi sekitar 2,5% terhadap total emisi karbon global, terdapat dorongan signifikan untuk mengadopsi inovasi teknologi, seperti sistem propulsi hibrida, elektrifikasi penuh, penggunaan bahan bakar alternatif (seperti LNG, hidrogen, dan amonia), serta penerapan teknologi efisiensi energi, misalnya pelumasan udara. Berbagai teknologi tersebut menunjukkan efektivitas yang beragam; LNG mampu menurunkan emisi CO₂ hingga 25%, sementara hidrogen dan amonia menawarkan potensi sebagai bahan bakar bebas karbon. Meskipun demikian, implementasi teknologi ini masih menghadapi sejumlah hambatan, antara lain tingginya biaya investasi, keterbatasan infrastruktur pendukung, serta kompleksitas regulasi internasional. Melalui pendekatan studi pustaka, penelitian ini mengkaji efektivitas teknologi yang tersedia, tantangan implementasinya, serta dampaknya terhadap operasional kapal dan keberlanjutan maritim. Temuan menunjukkan bahwa teknologi seperti pelumasan udara dan bahan bakar alternatif secara signifikan mampu mengurangi konsumsi energi dan emisi, namun membutuhkan dukungan infrastruktur yang memadai. Untuk mempercepat proses dekarbonisasi sektor maritim, diperlukan sinergi antara industri, pemerintah, dan pemangku kepentingan lainnya. Penelitian ini menyajikan wawasan strategis dalam mendukung transisi menuju pelayaran rendah karbon dan pembangunan maritim yang berkelanjutan secara global.
This research explores the integration of eco-friendly technologies in the maritime industry as a strategy to reduce greenhouse gas (GHG) emissions and promote sustainable sea transport. As maritime shipping accounts for roughly 2.5% of global carbon output, there is an urgent demand for innovative solutions such as hybrid propulsion, full electrification, alternative fuels (e.g., LNG, hydrogen, ammonia), and energy-saving technologies like air lubrication systems. These approaches have shown promising results—LNG can lower CO₂ emissions by up to 25%, while hydrogen and ammonia present carbon-free alternatives. Nonetheless, their implementation is constrained by high capital costs, limited infrastructure, and complex international regulations. Employing a literature-based analysis, this study assesses the effectiveness and challenges of these technologies, along with their operational and sustainability implications. The findings indicate that while technologies like air lubrication and low-emission fuels significantly cut fuel use and emissions, they demand major infrastructure investments. Achieving maritime decarbonization requires strong cooperation among governments, industry stakeholders, and regulators. This study offers strategic insights to support the transition toward cleaner and more sustainable maritime transportation.
Keywords: Dekarbonisasi teknologi hijau bahan bakar alternatif pelayaran berkelanjutan
International Maritime Organization (IMO). (2020). IMO and the Sustainable Development Goals. Dapat diakses di https://www.imo.org/en/MediaCentre/HotTopics/Pages/SustainableDevelopmentGoals.aspx pada 15 Januari 2025.
International Maritime Organization (IMO). (2015). Third IMO GHG Study 2014. London: IMO Publishing.
Balcombe, P., Brierley, J., Lewis, C., Skatvedt, L., Speirs, J., Hawkes, A., & Staffell, I. (2019). How to decarbonise international shipping: Options for fuels, technologies and policies. Energy Conversion and Management, vol. 182, pp. 72–88. https://doi.org/10.1016/j.enconman.2018.12.080.
Det Norske Veritas (DNV). (2022). Maritime Forecast to 2050 – Energy Transition Outlook. Dapat diakses di https://www.dnv.com/maritime/publications/maritime-forecast-to-2050.html pada 1 Januari 2025.
Lindstad, E., Rehn, C. F., & Eskeland, G. S. (2015). Sulphur abatement globally in maritime shipping. Transportation Research Part D: Transport and Environment, vol. 38, pp. 41–48. https://doi.org/10.1016/j.trd.2015.04.028.
Psaraftis, H. N. (2019). Sustainable Shipping: A Cross-Disciplinary View. New York: Springer. https://doi.org/10.1007/978-3-030-04330-8.
Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, vol. 104, pp. 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039.
Zhechen Zhang, Yang Liu, Yaping Dai, & Xinyu Liu. (2024). Hybrid propulsion and all-electric systems for ships: A comparative analysis. Applied Energy, 364, 120680. https://doi.org/10.1016/j.apenergy.2024.120680.
Giernalczyk, M., & Kaminski, J. (2021). The application of air lubrication systems on ships: Energy efficiency and operational implications. Ocean Engineering, 232, 109070. https://doi.org/10.1016/j.oceaneng.2021.109070.
Tadros, A., Elgohary, T., & El-Mesery, A. (2023). The implementation challenges and impact of EEXI and CII measures on existing ships. Marine Policy, 150, 105271. https://doi.org/10.1016/j.marpol.2023.105271.
Andrade, V., Schinas, O., & Hanschke, C. (2022). LNG as a transition fuel for maritime decarbonization: Environmental and economic aspects. Cleaner Logistics and Supply Chain, 3, 100034. https://doi.org/10.1016/j.clscn.2022.100034.